GOVT. POLYTECHNIC SIRSA

LESSON PLAN

Name of th Discipline Semester Subject	·	: AARTI ARORA : CIVIL ENGG. : 3rd :STRUCTURAL]	MECHAN	
Lesson Pla	Theory	I : 15 WEEKS (FK	OW 7 SEP Practical	TO 24 DEC 2020) L:3 P:2
Week	Lecture Day	Topic (including assignment / test)	Practical week	Торіс
1.	1.	To Introuction about the subject Properties of materials	1st	Determination of yield stress, ultimte stress, percentage elongation and plot the stress strain diagram and compute the value of yound's modules on mild steel
	2.	Classification of material, elastic, Plastic, Ductile, brittle materials.		
	3.	Introduction about tensile, compressive, impact, fatigue, torsion test.		
2.	1.	Concept of stress, normal and shear stresses.	2nd	Determination of yield stress, ultimte stress, percentage elongation and plot the stress strain diagram and compute the value of yound's modules on mild steel
	2.	Concept of strain and deformation, Logtitudinal and strain.		
	3.	Poisson ration and volumetric stress.		
3.	1.	Hook law, moduli of elasticity and rigidity, bulk modulus of elasticity, relation between the elastic constant.		Testing of HYSD Steel
	2.	Stressess and strains in bars subjected to tension and compression.	3rd	
	3.	Stress and strains diagram for mild steel and HYSD steel, mechanical properties, factor of safety. Temperature stresses and strains.		

4.	1.	Extension of uniform bar under its own weight, stress produced in compund bars (wo or tPeriodsee) due to axial load.	4th	Determination of young's modulus of elasticity for steel wire with searl's apparatus
	2.	Concept of a beam and supports (Hinges, Roller and Fixed)		
	3.	Types of beams : simply supported, cantilever, propped, over hand, cantilever and continuous beams (only concept).		
	1. 2.	Sessional 1st		
5.	3.	Types of loads (dead load, live load, snow load, wind load seismic load as per IS Codes etc)		
6.	1.	and types of loading (point, uniformly distributed and uniformly varying loads) Concept of bending moment and shear force, sign conventions.		Determination of young's modulus of elasticity
	2.	Bending Moment and shear force diagram for cantilever.	5th	for steel wire with searl's apparatus
	3	Simply suported and overhanging beams subjected to concentrated, uniformly distributed.		
	1.	Relationship between load, shear force and bending moment, point of maximum bending moment and point of contraflexure.		

7.	2.	Concept of moment of inertia and second moment of area and radius of gyration, theorems of parallel perpendicular axis, second moment of area of common geometrical sections: rectangle, triangle. Circle.	6th	Determination of modulus of rupture of a concrete beam
8.	1. 2. 3.	 Second moment of area for L,T and I sections modulus. Bending stresses in Beams Concept of pure/simple bending Assumptions made in the theory of simple bending, derivation 	7th	Determination of modulus of rupture of a concrete beam
9.	1. 2. 3.	 Application of bending equation to circular cross-section, I section, T & L sections only Moment of resistance Calculations of bending stresses in simply supported beam Revision of ch 4th and 5th. 	8th	Determination of maximum deflecion and young's molulus of elasticity in simply supported beam with load at middle third point
10.	1. 2. 3.	Sessional test 2nd Shear stresses in beams		
11.	1. 2.	Concept of shear stresses in beams Shear stressdistribution in rectangular, circular section for simply supported beam	9th	Determination of maximum deflecion and young's molulus of elasticity in simply supported

Ĩ		Shear stress		beam with load at middle third point
		distribution in rI,T,L		beam with load at middle tinte point
	3	sections for S.S		
	5	beams and Portland		
		beams and I ortified		
	1.	Slope and Deflection:		
	2.	Determination of slope		
		and deflection using		
		Moment Area Theorem		
		for simply supported		
		beam for pointed load.		
12.		1	10th	Verification of forces in a framed structure
	3.	Determination of slope		
		and deflection using		
		Moment Area theorem		
		for simply supported		
		beam for UDL load.		
13.	1.	Columns Theory of		
	-	Columns		Verification of forces in a framed structure
	2.	Problem Solving using Eulers and Rankine		
		Formula	11th	
	3.	Analysis of Trusses		
	5.	Concept of a perfect,		
	1.	redundant and deficient		
		frames		
	2.	Assumptions and	12th	Repeat any experiment and copy check
		ananlysis of trusses by :		
14.		(a) method of joints		
	3.	Assumptions and		
		analysis of trusses by :		
		(a) method of section		
15	1.	REVISION		
	2.	REVISION		
	3.	REVISION		